MATH 54 - MIDTERM 1 STUDY GUIDE

PEYAM RYAN TABRIZIAN

Note: Midterm 1 is on Friday, June 29th in 4 Evans from 12:05 pm to 1 pm (although I will try to give you more time!) It covers sections $1.1-1.5,2.1-2.3,3.1-3.2$ of the Linear Algebra book, although there will be NO questions on linear combinations, span, and linear (in)dependence (except for the IMT in section 2.3).

Note: 1.3.4 means 'Problem 4 in section 1.3'

Chapter 1: Linear Equations in Linear Algebra

- Solve a system of equations, or determine if there are no solutions. (1.1.11, 1.1.13, 1.1.15, 1.2.7, 1.2.11, 1.2.13)
- Solve the equation $A \mathbf{x}=\mathbf{b}$ for a given \mathbf{b} (1.4.11, 1.5.1, 1.5.3, 1.5.9. 1.5.11, 1.5.13)
- Also know how to write your answer in parametric vector form. For example, know how to write your solution in the form:

$$
\mathbf{x}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+s\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]+t\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]
$$

- Know the 'useful fact' about inconsistent systems (i.e. a system has no solutions if and only if there is a row in the augmented matrix of the form $\left[\begin{array}{lllll}0 & 0 & 0 & 0 & b\end{array}\right]$, where $b \neq 0(1.3 .23,1.3 .24)$
- Know the fact that the general solution to $A \mathbf{x}=\mathbf{b}$ is the sum of a particular solution to $A \mathbf{x}=\mathbf{b}$ plus the general solution to $A \mathbf{x}=\mathbf{0}$.

Chapter 2: Matrix Algebra

- Given matrices A and B, calculate $A B, B A, A^{2}, A^{T}, A+B,-3 A$ etc. (2.1.1, 2.1.3)
- Find the inverse of a 2×2 matrix using the formula on page 121 (2.2.1, 2.2.3)
- Prove a couple of cute facts about invertible matrices (see 2.2.13 or 2.2.15 nothing more difficult than that)
- Find the inverse of any matrix (or show it is not invertible) using row-reduction (2.2.31, 2.2.32)
- Know a couple of facts about inverses (such as $\left(A^{-1}\right)^{-1}=A,(A B)^{-1}=B^{-1} A^{-1}$)
- Know conditions $(a),(b),(c),(d),(e),(g),(h)$ of the invertible matrix theorem! (page 131). That's the only time I will ask you about linear independence (see note on the next page)

Note: You don't need to learn the IMT by heart, just remember that invertible matrices are awesome! For example, I could ask you: Is the following matrix invertible?

$$
\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]
$$

And you would tell me 'No because its columns are linearly dependent, hence by IMT the matrix is not invertible'

Or I could ask you: Is a 3×3 matrix with 2 pivots invertible (No).

- Use the IMT to figure out if a matrix is invertible or not, or other facts about invertible matrices (2.3.3, 2.3.5, 2.3.8, 2.3.15, 2.3.18, 2.3.22, 2.3.24).

CHAPTER 3: DETERMINANTS

- Calculate the determinant of a 2×2 matrix using the formula: $\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$
- Calculate the determinant of an $n \times n$ matrix using the algorithm shown to you on Monday (3.1.1, 3.1.3, 3.1.9, 3.1.13)
- Calculate the determinant of an $n \times n$ matrix using row-reduction (3.2.5, 3.2.7)
- Use determinants to figure out if a matrix is invertible or not (3.2.23)
- Know how to use the formula $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ and $\operatorname{det}\left(A^{-1}\right)=\frac{1}{\operatorname{det}(A)}$ (3.2.31, 3.2.34, 3.2.36)

True/False Extravaganza

Check out the following set of T/F questions (solutions are in the HW hints, but beware, there might be mistakes, e-mail me whenever something seems to be wrong): 1.1.23(a)(b), $1.1 .24,1.2 .21,1.3 .23(\mathrm{~d}), 1.3 .24(\mathrm{a})(\mathrm{b}), 1.4 .23$ (c)(f), 1.4.24(c)(e), 1.5 .23 (a)(c)(e), $1.5 .24(\mathrm{a})(\mathrm{c})(\mathrm{e})$, 2.3.11, 2.3.12(a)(b)(c), 3.2.27, 3.2.28

CONCEPTS

Here are a couple of concepts we learned so far. You don't have to memorize the definitions, just have a rough idea of what those things are

- Pivots
- (In)consistent systems
- (Reduced) row-echelon form
- Elementary row operations
- Vector
- Free variable
- Homogeneous equation
- A^{T}
- A^{-1}, Invertible matrix, Invertible Matrix Theorem
- Determinants

